Alternating Series

Anton 11.7

Tests for Convergence/ Divergence (so far):

1. Geometric Series Test
2. P-series Test (included harmonic series)
3. Divergence Test
4. Integral Test
5. Ratio Test
6. Root Test
7. Limit Comparison Test
8. Comparison Test

Informal Principle \#1

Constant terms in the denominator can be ignored without affecting the convergence or divergence of a series.

Informal Principle \#2

Highest powers of k matter the most in a polynomial. Ignoring the rest will not affect the convergence or divergence of the series.
$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^{3}+2 k}}$
beanue like preales, $p=3 / 2$
$\sum \frac{1}{\sqrt{k^{3}+2 k}} \mathrm{cmv}$.

Alternating Series

In general, an alternating series has one of the following two forms:

$$
\begin{aligned}
& \sum_{k=1}^{\infty}(-1)^{k+1} a_{k}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots \\
& \sum_{k=1}^{\infty}(-1)^{k} a_{k}=-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
\end{aligned}
$$

In both cases, assume a_{k} is positive.

Alternating Series Test

An alternating series converges if the following are both true:

$$
\left.\begin{array}{ll}
\text { 1. } a_{1}>a_{2}>a_{3}>\cdots \\
\text { 2. } & \lim _{\mathrm{k} \rightarrow \infty} \mathrm{a}_{\mathrm{k}}=0
\end{array}\right\} \begin{aligned}
& \text { The absolute value } \\
& \text { of the terms } \\
& \text { (disregard sign) are } \\
& \text { decreasing to } 0
\end{aligned}
$$

MAGNITUDE

Ex: $\quad \sum_{\mathrm{k}=1}^{\infty} \frac{(-1)^{\mathrm{k}}}{\mathrm{k}}$ ALTERNATiNG
$=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\cdots \cdots$
THE MAGNITUDE OF TERMS ARE DECEASING TO $\mathrm{O} \Rightarrow$ COnverges.

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} \operatorname{conv}
$$

$$
\begin{aligned}
& \operatorname{Ex}: \sum_{k=1}^{\infty} \frac{(-1)^{k+1}(k+3)}{k(k+1)} \\
& =\frac{4}{(2)}-\frac{5}{2(3)}+\frac{6}{3(4)}-\frac{7}{(4)(5)}+\cdots
\end{aligned}
$$

THE MAb. OF TERMS ARE DECEASing To 0

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(k+s)}{(k)(k+1)} \text { conN. }
$$

Absolute Convergence:

An alternating series will converge absolutely if:

$$
\sum_{k=1}^{\infty}\left|(-1)^{k} a_{k}\right|=a_{1}+a_{2}+a_{3}+\cdots \text { converges. }
$$

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{(-1)^{k}}{2^{k}} \rightarrow \text { con. ABsolutely } \\
& \sum\left|\frac{(-1)^{k}}{2^{k}}\right|=\sum \frac{1}{2^{k}} \text { semmulr=1/2} \rightarrow \text { conv. }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} \rightarrow \begin{array}{c}
\text { DoEs NoT chs. } \\
\text { ABSOLUTELY }
\end{array} \\
& \sum\left|\frac{(-1)^{k}}{k}\right|=\sum_{\bar{K}}^{1} \rightarrow \text { Diverges. }
\end{aligned}
$$

Theorem: If a series converges absolutely, then it converges (two for one.)

Conditional Convergence:

If an alternating series converges but the series of absolute values does not, then the original alternating series converges conditionally.
Ex: $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} \operatorname{conv}$ complitonaul

Ratio Test for Absolute Convergence

Let $\Sigma \mathrm{u}_{\mathrm{k}}$ have nonzero terms.
Let $\rho=\lim _{k \rightarrow \infty}\left|\frac{u_{k+1}}{u_{k}}\right|=\lim _{k \rightarrow 0}\left|u_{k+1} \cdot \frac{1}{u_{k}}\right|$

1. If $\rho<1$ then the series converges absolutely.
2. If $\rho>1$ then the series diverges.
3. If $\rho=1$ then the test is inconclusive*.
*Further examination is required.

$$
\begin{aligned}
& \text { Ex: } \sum_{k=1}^{\infty}(-1)^{k} \frac{2^{k}}{k!} \\
& \rho=\lim _{k \rightarrow \infty}\left|u_{k n} \cdot \frac{1}{u_{k}}\right| \\
& \begin{aligned}
=\lim _{k \rightarrow \infty} \left\lvert\, \frac{2^{k \pi}}{(k+1)} Y_{1}\right. & \frac{k k^{k}}{z^{k}} \left\lvert\,=0<1 \therefore \sum(-1)^{k} \frac{2^{k}}{k^{\prime}} \mathrm{cmv}\right. \text { ABsount24 } \\
& \left.\left(\sum \frac{2^{k}}{k^{\prime}}\right)\right]
\end{aligned}
\end{aligned}
$$

Tests for Convergence/ Divergence (so far):

1. Geometric Series Test conv $\mid H<1$
2. P -series Test (including harmonic) conv $p>1$
3. Divergence Test
4. Integral Test
5. Ratio Test for Absolute Convergence
6. Root Test (for Absolute Convergence)
7. Limit Comparison Test
8. Comparison Test
9. Alternating Series Test

Homework:

Anton 11.7 \# 1-29 odd

