Alternating Series

Anton 11.7

Tests for Convergence/Divergence (so far):

- 1. Geometric Series Test
- 2. P-series Test (included harmonic series)
- 3. Divergence Test
- 4. Integral Test
- 5. Ratio Test
- 6. Root Test
- 7. Limit Comparison Test
- 8. Comparison Test

Informal Principle #1

Constant terms in the denominator can be ignored without affecting the convergence or divergence of a series.

$$\sum_{k=1}^{\infty} \frac{1}{2^k + 1}$$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$$

Informal Principle #2

Highest powers of *k* matter the most in a polynomial. Ignoring the rest will not affect the convergence or divergence of the series.

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^3 + 2k}}$$
BEHAVE LIKE PSERVES, $\rho = 3/2$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^3 + 2k}}$$

$$\sum_{k=1}^{\infty} \frac{6k^4 - 2k^3 + 1}{k^5 + k^2 - 2k} \sim \sum_{k=1}^{\infty} \frac{6}{k}$$

BEHAVES LIKE A HARMMIC -> DIVERSES

Alternating Series

In general, an alternating series has one of the following two forms:

$$\sum_{k=1}^{\infty} (-1)^{k+1} a_k = a_1 - a_2 + a_3 - a_4 + \cdots$$

$$\sum_{k=1}^{\infty} (-1)^k a_k = -a_1 + a_2 - a_3 + a_4 - \cdots$$

In both cases, assume a_k is positive.

Alternating Series Test

An alternating series converges if the following are both true: MAGNITUDE

1.
$$a_1 > a_2 > a_3 > \cdots$$

2. $\lim_{k \to \infty} a_k = 0$

$$2. \lim_{k\to\infty} a_k = 0$$

The absolute value of the terms (disregard sign) are decreasing to 0.

Ex:
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$
 AUTORNATING TWENMIC

$$=$$
 $-1+\frac{1}{2}-\frac{3}{3}+\frac{1}{4}-\cdots$

THE MAGNITUDE OF TERMS ARE

DELEASING TO O => COM VEREGES,

Ex:
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(k+3)}{k(k+1)}$$

$$= \frac{4}{1(2)} - \frac{5}{2(3)} + \frac{6}{3(4)} - \frac{7}{(4)(5)} + \cdots$$

THE MAG. OF TERMS ARE DECEMBING TO O

Absolute Convergence:

An alternating series will converge absolutely if:

$$\sum_{k=1}^{\infty} \left| \left(-1 \right)^{k} a_{k} \right| = a_{1} + a_{2} + a_{3} + \cdots \text{ converges.}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2^{k}} \rightarrow CONV | ABSOLUTERY$$

$$\geq \left| \frac{(-1)^{k}}{2^{k}} \right| = \sum_{k=1}^{\infty} \frac{1}{2^{k}} | CONV | CONV$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{2^k} \rightarrow \text{COMV ABSOLUTERY} \qquad \sum_{k=1}^{\infty} \frac{(-1)^k}{k} \rightarrow \text{DOFS NOT CMV}$$

$$\geq \left| \frac{(-1)^k}{2^k} \right| = \sum_{k=1}^{\infty} \frac{1}{k} \text{GEMM}_{k} | r = 1/2$$

$$\geq \left| \frac{(-1)^k}{2^k} \right| = \sum_{k=1}^{\infty} \frac{1}{k} \text{GEMM}_{k} | r = 1/2$$

$$\geq \left| \frac{(-1)^k}{k} \right| = \sum_{k=1}^{\infty} \frac{1}{k} \text{DIVERGES.}$$

Theorem: If a series converges absolutely, then it converges (two for one.)

Conditional Convergence:

If an alternating series converges but the series of absolute values does not, then the original alternating series converges *conditionally*.

Ex:
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$
 cm v cmpmany

Ratio Test for Absolute Convergence

Let Σu_k have nonzero terms.

Let
$$\rho = \lim_{k \to \infty} \left| \frac{u_{k+1}}{u_k} \right| = \lim_{k \to \infty} \left| \frac{u_{k+1}}{u_k} \right|$$

- 1. If ρ < 1 then the series converges *absolutely*.
- 2. If $\rho > 1$ then the series diverges.
- 3. If $\rho = 1$ then the test is inconclusive*.

^{*}Further examination is required.

Ex:
$$\sum_{k=1}^{\infty} \left(-1\right)^k \frac{2^k}{k!}$$

$$=\lim_{k\to\infty}\left|\frac{a^{kn}}{(kn)!}\frac{k!}{2^k}\right|=0<1$$

Tests for Convergence/Divergence (so far):

- 1. Geometric Series Test Conv ITIC
- 2. P-series Test (including harmonic) (my p>)
- 3. Divergence Test
- 4. Integral Test
- 5. Ratio Test for Absolute Convergence
- 6. Root Test (for Absolute Convergence)
- > Limit Comparison Test
- **8.** Comparison Test
 - 9. Alternating Series Test

Homework:

Anton 11.7 # 1 – 29 odd