Alternating Series

Anton 11.7



Tests for Convergence/Divergence (so far):

1. Geometric Series Test

2. P-series Test (included harmonic series)
3. Divergence Test

4. Integral Test

5. Ratio Test

6. Root Test

/. Limit Comparison Test

8. Comparison Test




Informal Principle #1

Constant terms in the denominator can be ignored without
affecting the convergence or divergence of a series.
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Informal Principle #2

Highest powers of k matter the most in a polynomial.

Ilgnoring the rest will not affect the convergence or

divergence of the series.
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Alternating Series O 7 O

In general, an alternating series has one of the
following two forms:

>(-1)"a, =a-a,+a,-a,+

Z(—l)kak =-a, +a,—-a,+a, — -

In both cases, assume a, Is positive.



Alternating Series Test

An alternating series converges Iif the following
are both true: PAGR TADE
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Absolute Convergence:

An alternating series will converge absolutely If:

Z(—l)kak =a, +a, +a, +--- converges.
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Theorem: If a series converges absolutely,
then it converges (two for one.)

Conditional Convergence:

If an alternating series converges but the series
of absolute values does not, then the original
alternating series converges conditionally.
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Ratio Test for Absolute Convergence

Let >u, have nonzero terms.
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Let | p=Ilim

k—o0

1. If p<1then the series converges absolutely.

2. If p>1 then the series diverges.

3. If p=1 then the test is inconclusive*.

*Further examination is required.







Tests for Convergence/Divergence (so far):

1. Geometric Series Test  CmU (< |

2. P-series Test (including harmonic) Cmy\ P>)
3. Divergence Test
4
5

. Integral Test C - AEHOLATED]
. Ratio Test for Absolute Convergence F =
6. Root Test (for Absolute Convergence)
< Limit Comparison Test
"8 Comparison Test
9. Alternating Series Test



Homework:
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